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Scalar l f 4 Model with Nontrivial Topology

Igor Kulikov1

Received May 19, 1999

Effects of nontrivial topology S1 3 R3 of space-time for a scalar self-interacting
l f 4 model in the perturbative regime are discussed. Asymptotic properties of the
coupling constant for untwisted and twisted field configurations are investigated.

1. INTRODUCTION

Quantum field models are sensitive to both the local and the global
space-time structures. The local structure of space-time is connected with

curvature, and the global one with topology. The interest in models with

nontrivial geometries and topologies is based on the attempts to describe the

interaction of quantum fields with gravity [1±3], and (or) in the presence of

surfaces [4±8]. The role of topological structure of the space-time manifold

was considered in a number of articles: interacting quantum fields in the
perturbative regime were studied in refs. 9±13 with regard to the symmetry

breaking and mass generation in self-interacting and gauge models, the prob-

lem of vacuum polarization and causality in electrodynamics [14], and in

models with dynamical symmetry breaking in the nonperturbative regime

[16, 17].
The renormalization of interacting quantum fields with periodic (antipe-

riodic) identification in one of the spatial coordinates [12, 15] in the perturba-

tive regime includes a topological parameter, and the topology influences the

behavior of physical parameters of the models. The construction of thermo

field models is also connected with changing the initial space-time structure

of field models through the introduction of the temperature by compactifica-
tion of the time coordinate, which allows one not only to construct the

thermodynamics of quantum systems [18], but also to study the variations
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of physical parameters of these models with temperature [19±21], finite-

temperature mass corrections for the electron in QED [22], plasmon mass in

the relativistic fermion gas [23], symmetry restoration and phase transitions
[26, 27, 29], etc. From the technical point of view thermal field models and

field models with nontrivial topology of space-time with one parameter can

be treated in the same manner. The nontrivial topology as well as temperature

corrections affect the Green’ s functions of the fields without any radical

changing of the Feynman rules, which allows us to use the methods of

standard quantum field theory [28].
The purpose of this article is to study scalar-field model with l f 4

interaction in space-time with nontrivial topology in perturbation theory; to

consider the problem of renormalization of the model in space-time with

S1 3 R3 topology; to study the behavior of the physical parameters of the

model with respect to scaling the topological parameters; and to consider the

finite-temperature regime for this model.
The study of this model from the aspects mentioned above might offer

new insight into the structure renormalizations and dependence of the physical

parameters of quantum field models on the topology in perturbation theory.

The method used for renormalization of this model is based on the loop

computations with the Feynman propagator similar to its ª real timeº form
of thermo field dynamics (TFD) [22, 26, 30] and minimal subtraction renor-

malization procedure [32, 24]. Such a formulation of the Feynman propagator

considerably simplifies computations of Feynman graphs and the procedure

of renormalization, making them similar to relatively straightforward methods

of TFD. In order to study the behavior of the coupling constant of the model

we use the modified renormalization group (RG) technique which affects the
topoligical structure of the space-time.

The article is organized in the following way. Two-loop renormalizations,

the structure of counterterms, and the behavior of physical parameters of the

self-interacting l f 4 model in S1 3 R3 space-time topology with untwisted

and twisted field configurations are considered in Section 2. Asymptotic

properties of the model are analyzed in Section 3. The connection with finite-
tempereature field theory and the properties of the model are discussed in

Section 4.

2. RENORMALIZATIONS OF l f 4 MODEL WITH
NONTRIVIAL TOPOLOGY

In this section, we consider the methods of two-loop renomalization of

the scalar self-interacting l w 4 model with S1 3 R3 topology. Let the Euclidean

unrenormalized Lagrangian be written as
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L 5 2
1

2
( - f )2 2

1

2
m2

B f 2 2
l B

4!
f 4 (1)

where mB and l B are bare mass and coupling constants.

To develop the perturbation formalism for the model we assume

m2
B 5 d m2 1 m2

R

l B 5 d l 1 l R (2)

where mR and l R are the renormalized mass parameter and the coupling

constant, and d m2 and d l are mass and coupling constant counterterms. Then

one can write (1) as the sum of unperturbed and interacting parts

L 5 L0 1 Lint (3)

where

L0 5 2
1

2
( - f )2 2

1

2
m2

R f 2 (4)

Lint 5 2
d m2

2
f 2 2

l B

4!
f 4 (5)

Let us introduce the topology S1 3 R3 in flat space-time by making a

compactification with respect to one spatial coordinate x1 P [0, z ]. This

topology allows us to introduce untwisted and twisted fields as f (x1 5 0, x)

5 6 f (x1 5 z , x).
The generating functional of the model will have the following form:

ZE[ z ] 5 # f 5 6 f

D f exp F # z

0

dx1 # R3
d 3x (L( f , - f ) 1 f (x)J(x))G (6)

The quadratic part of this action is

S0 5 2
1

2 #
z

0

dx1 # R
3

d 3x [( - f )2 1 m2
R f 2] (7)

To get the Feynman propagator from S0 we expand f (x1, x) in a Fourier series

f (x1, x) 5
1

z o
`

n 5 2 ` # d 3k

(2 p )3 exp[i v nx
1 1 ikx] f n(k) (8)

where

v n 5 H (2 p / z )(n 1 1/2)

(2 p / z )n
(9)

defines periodic and antiperiodic field configurations.
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With the help of the equation

1

z #
z

0

dx1 exp[i( v n 2 v n8)x
1] 5 d nn8 (10)

we write the quadratic part of the action

S0 5 2
1

2 o
`

n 5 2 ` # d 3k

(2 p )3 f n(k)[ v 2
n 1 k2 1 m2

B] f 2 n( 2 k) (11)

or in the form of a scalar product on function space as

S0 5 2
1

2
( f , D f ) (12)

where

D 5 v 2
n 1 k2 1 m2

R (13)

The Feynman propagator D in the momentum space is connected with D by

the inverse transform; therefore

D ( v n , k) 5
1

v 2
n 1 k2 1 m2

R

(14)

and in the position space we get

D F (x 2 x8) 5
1

z o
n # d 3k

(2 p )3

exp[i v n(x
1 2 x81) 1 ik(x 2 x8)]

v 2
n 1 k2 1 m2

R

(15)

This expression may be written in as

D F (x) 5 # z

d 4k

(2 p )4

1

k2 1 m2
R

exp[ikx] (16)

where the momentum is k m 5 ( v n , k) and the symbol of integration is

# z

d 4k

(2 p )4 5
1

z o
`

n 5 2 ` # d 3k

(2 p )3 (17)

Adding here the vertex coupling constant in the form ( 2 l R) and the expression

for the d -function

(2 p )4 d 4(k1, k2, . . .) 5 (2 p )3 z d v n1, v n2,... d 3(k1, k2, . . .) (18)

we completely define the modifications for Feynman rules at S1 3 R3

space-time.
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An alternative way to study this model in the perturbative regime is

based on the modification of the Feynman propagator to the four-dimensional

momentum form

D (x, z ) 5 # d 4k

(2 p )4 D (k, z ) exp(ikx) (19)

with

D (k, z ) 5
1

k2 1 m2
R

6
2 p i d (k2 1 m2

R)

exp( z ) k1 ) ) 7 1
5 D 0(k) 6 D 6 (k, z ) (20)

where D 0(k) is the standard form of Feynman propagator, and D 6 (k, z ) are

topologically dependent contributions. This form of tree-level propagator does

not include the summation and is convenient for perturbative computations.
To make renormalizations of the model we will use the propagator in

the form (20) and vertex ( 2 l R m 4 2 n), where the mass parameter m makes the

coupling constant dimensionless for n Þ 4. Two and four 1 P.I. point vertices

are shown in Figs. 1 and 2.

The contribution of Fig. 1b of the order l R to the self-energy is

G (b)
2) ( z ) 5

1

2
( 2 l R m 4 2 n) # d nk

(2 p )n D (k, z )

5 2
l R

2
m 4 2 n # d nk

(2 p )n D 0(k) 7
l R

2
m 4 2 n # d nk

(2 p )n D 6 (k, z ) (21)

We write the first integral of (21) with the help of the equation

Fig. 1. Diagrams contributing to the self-energy.
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Fig. 2. Vertex diagrams.

# d nk

(2 p )n

1

(k2 1 M 2 1 2kp)d 5
1

(4 p )n/2

G (d 2 n/2)

G (d )

1

(M 2 2 p2)d 2 n/2 (22)

in the form

1

2
( 2 l R m 4 2 n) # d nk

(2 p )n

1

k2 1 m2
R

5
1

2
( 2 l R m 4 2 n)

1

(4 p )n/2

G (1 2 n/2)

G (1)

1

(m2
R)1 2 n/2

5 2
l R

2 1 m2
R

16 p 2 2 1 m2
R

4 p m 2 2
n/2 2 2

G 1 1 2
n

2 2 (23)

Using the expansions

G 1 1 2
n

2 2 5
2

n 2 4
1 g 2 1 (24)

and

1 m2
R

4 p m 2 2
n/2 2 2

5 1 1 1 n

2
2 2 2 ln

m2
R

4 p m 2 1 O 1 1 n

2
2 2 2

2

2 (25)

we find the resulting equation for Fig. 1b as

G (b)
2) ( z ) 5 2 l R

m2
R

32 p 2 F 2

n 2 4
1 g 2 1 1 ln

m2
R

4 p m 2G
7

l R

2
m 4 2 n S 6 ( z ) (26)

where

S 6 ( z ) 5 # d nk

(2 p )n D 6 (k, z ) (27)

is a function of the parameter z .
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Now we compute contributions of the second order of perturbation.

The diagram of Fig. 1c is

G (c)
2) ( z ) 5

1

2
( 2 d l m 4 2 n) # d nk

(2 p )n D (k, z )

5 2
d l
2

m 4 2 n # d nk

(2 p )n D 0(k) 7
d l
2

m 4 2 n # d nk

(2 p )n D 6 (k, z ) (28)

The first integral is found the same way as before. It gives

G (c)
2) ( z ) 5 2 d l

m2
R

32 p 2 F 2

n 2 4
1 g 2 1 1 ln

m2
R

4 p m 2G
7

d l
2

m 4 2 n S 6 ( z ) (29)

The contribution of Fig. 1d is

G (d)
2) ( z ) 5

1

2
( l R m 4 2 n) d m2 # d nk

(2 p )n D 2(k, z )

5
1

2
( l R m 4 2 n) d m2 # d nk

(2 p )n [ D 2
0(k) 6 2 D 0(k) D 6 (k, z ) 1 D 2

6 (k, z )] (30)

The first integral is

1

2
( l R m 4 2 n) d m2 # d nk

(2 p )n

1

(k2 1 m2
R)2

5
1

2
( l R m 4 2 n)

d m2

(4 p )n/2

G (2 2 n/2)

G (2)

1

(m2
R)2 2 n/2

5
l R

32 p 2 d m2 1 m2
R

(4 p m 2) 2
n/2 2 2

G 1 2 2
n

2 2 (31)

Using the expression

G 1 2 2
n

2 2 5 2
2

n 2 4
2 g (32)

and expansion (25), we find
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1

2
( l R m 4 2 n) d m2 # dnk

(2 p )n

1

(k2 1 m2
R)2

5
l R

32 p 2 d m2 F 2 2

n 2 4
2 g G F 1 1

n 2 4

2
ln

m2
R

4 p m 2G (33)

As a result we get the expression for the divergent part of Fig. 1d in the form

G (d)
2) ( z ) 5 2

l R

32 p 2 d m2 F 2

n 2 4
1 g 1 ln

m2
R

4 p m 2G
6 l R( d m2) m 4 2 n V 6 ( z ) (34)

where

V 6 ( z ) 5 # d nk

(2 p )n D 0(k) D 6 (k, z ) (35)

is a finite function.

The two-loop contribution Fig. 1f is

G (f)
2) ( z ) 5

1

4
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 2(k, z ) D (q, z ) (36)

The divergent terms are found from

G (f)
2) ( z ) 5

1

4
( l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 2
0(k) D 0(q)

6
1

2
( l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 0(k) D 0(q) D 6 (k, z )

6
1

4
( l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 2
0(k) D 6 (q, z ) (37)

Rewrite (37) as

G (f)
2) ( z ) 5

1

4
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 2
0(k) D 0(q)

6
1

2 F ( l R m 4 2 n)2 # d nk

(2 p )n D 0(k)G V 6 ( z )

6
1

4 F ( l R m 4 2 n)2 # d nk

(2 p )n D 2
0(k)G ( 6 ( z ) (38)

The first integral of the above expression is



Scalar l f 4 Model with Nontrivial Topology 2519

1

4
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 2
0(k) D 0(q)

5
l 2

R

4 F m 4 2 n # d nk

(2 p )n D 2
0(k)G F m 4 2 n # d nq

(2 p )n D 0(q)G
5

l 2
R

4 F 1

16 p 2 1 m2
R

4 p m 2 2
n/2 2 2

G 1 2 2
n

2 2 G F m2
R

16 p 2 1 m2
R

4 p m 2 2
n/2 2 2

G (1 2 n/2)G
5

l 2
R

4 1 1

16 p 2 2
2

1 m2
R

4 p m 2 2
n 2 4

m2
R G 1 2 2

n

2 2 G 1 1 2
n

2 2
5 m2

R

l 2
R

4 1 1

16 p 2 2
2 F 2 2

n 2 4
2 g G F 2

n 2 4
2 1 1 g G F 1 1 (n 2 4) ln

m2
R

4 p m 2G
2 m2

R

l 2
R

4 1 1

16 p 2 2
2 F 4

(n 2 4)2 1
2

(n 2 4) 1 2 g 2 1 1 2 ln
m2

R

4 p m 2 2 1 ? ? ? G (39)

The next two integrals are computed in the same way and the result for

divergent contributions in (36) is

G (f)
2) ( z ) 5 2

l 2
R

(16 p 2)2

m2
R

(n 2 4)2

2
l 2

R

2(16 p 2)2

m2
R

(n 2 4) F 2 g 2 1 1 2 ln
m2

R

4 p m 2G
7

l 2
R

32 p 2

1

(n 2 4)
m 4 2 n ( 6 ( z ) 6

l 2
Rm2

R

16 p 2

1

(n 2 4)
m 4 2 n V 6 ( z ) (40)

The contribution of Fig. 1g is written as

G (g)
2) ( p, z ) 5

1

6
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D (k, z ) D (q, z ) D (k 1 q 1 p, z ) (41)

Divergent terms in this integral are written as

G (g)
2) ( p, z ) 5

1

6
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 0(k) D 0(q) D 0(k 1 q 1 p)

6
1

6
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 6 (k, z ) D 0(k 1 q 1 p) D 0(q)

6
1

6
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 6 (q, z ) D 0(k) D 0(k 1 q 1 p)
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6
1

6
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 0(k) D 0(q) D 6 (k 1 q 1 p, z ) (42)

The first integral of the above expression does not include the topological

contributions. Its divergent part is written as

1

6
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 0(k) D 0q D 0(k 1 q 1 p, z )

5 2
l 2

R

(16 p 2)2 1 m2
R

4 p m 2 2
n 2 4

m2
R

(n 2 4)2 1
l 2

R

(16 p 2)2

1

(n 2 4)

3 F p2

12
1

m2
R

2
2 ( g 2 1)m2

RG 1 ? ? ?

5 2
l 2

R

(16 p 2)2

m2
R

(n 2 4)2 1
l 2

R

12(16 p 2)2

1

(n 2 4)
( p2 1 6m2

R)

2
l 2

R

(16 p 2)2

m2
R

(n 2 4) F g 2 1 1 ln
m2

R

4 p m 2G 1 ? ? ? (43)

The sum of the contributions with topological parameter is

1

6
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 6 (k, z ) D 0(k 1 q 1 p) D 0(q)

1
1

6
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 6 (q, z ) D 0(k) D 0k 1 q 1 p)

1
1

6
( 2 l R m 4 2 n)2 # d nk

(2 p )n

d nq

(2 p )n D 0(k) D 0(q) D 6 (k 1 q 1 p, z )

5 2
l 2

R m 4 2 n

32 p 2 # d nk

(2 p )n D 6 (k, z )

3 F 2

(n 2 4)
1 g 1

2

3 #
1

0

dx ln
m2

R 1 ( p 1 k)2x(1 2 x)

4 p m 2

1
1

3 #
1

0

dx ln
m2

R 1 ( p 2 k)2x(1 2 x)

4 p m 2 G (44)

Combining the divergent terms of Fig. 1g, we get



Scalar l f 4 Model with Nontrivial Topology 2521

G (g)
2) ( p, z ) 5 2

l 2
R

(16 p 2)2

m2
R

(n 2 4)2 1
l 2

R

(16 p 2)2

1

12(n 2 4)
( p2 1 6m2

R)

2
l 2

R

(16 p 2)2

m2
R

(n 2 4) F g 2 1 1 ln
m2

R

4 p m 2G
7

l 2
R m 4 2 n

16 p 2

1

(n 2 4)
( 6 ( z ) (45)

The contribution of Fig. 2c to the four-point vertex is

G (c)
4) ( p, z ) 5

1

2
( 2 l R m 4 2 n)2 # d nk

(2 p )n D (k) D (k 1 p)

5
1

2
( 2 l R m 4 2 n)2 # d nk

(2 p )n D 0(k) D 0(k 1 p)

6
1

2
( 2 l R m 4 2 n)2 # d nk

(2 p )n D 6 (k) D 0(k 1 p)

6
1

2
( 2 l R m 4 2 n)2 # d nk

(2 p )n D 0(k) D 6 (k 1 p)

1
1

2
( 2 l R m 4 2 n)2 # d nk

(2 p )n D 6 (k) D 6 (k 1 p) (46)

Rewrite the first integral with the help of the equation

1

a b
5 #

1

0

dx
1

[ a x 1 b (1 2 x)]2
(47)

as

1

2
( 2 l R m 4 2 n)2 # d nk

(2 p )n D 0(k) D 0(k 1 p)

5
1

2
( 2 l R m 4 2 n)2 #

1

0

dx # d nk

(2 p )n

1

[(k2 1 2pkx 1 (m2
R 1 p2x)]2

(48)

Using (22), (25), and (32), we find

1

2
( 2 l R m 4 2 n)2 # d nk

(2 p )n D 0(k) D 0(k 1 p)

5
l 2

R

32 p 2 m 4 2 n G 1 2 2
n

2 2 #
1

0

dx F m2
R 1 p2x(1 2 x)

4 p m 2 G n/2 2 2
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5
l 2

R

32 p 2 m 4 2 n #
1

0

dx F 2 2

n 2 4
2 g G F 1 1

n 2 4

2
ln

m2
R 1 p2x(1 2 x)

4 p m 2 G (49)

Then

1

2
( 2 l 2

R m 4 2 n)2 # d nk

(2 p )n D 0(k) D 0(k 1 p)

5 2
l 2

R

16 p 2 m 4 2 n 1

(n 2 4)
2

l 2
R

32 p 2 m 4 2 n F g 1 #
1

0

dx ln
m2

R 1 p2x(1 2 x)

4 p m 2 G (50)

As a result we find

G (c)
4) ( p, z ) 5 2

l 2
R

16 p 2 m 4 2 n 1

(n 2 4)

2
l 2

R

32 p 2 m 4 2 n F g 1 #
1

0

dx ln
m2

R 1 p2x(1 2 x)

4 p m 2 G
6 ( l R m 4 2 n)2 V 6 ( p) (51)

where

V 6 ( p, z ) 5 # d 3k

(2 p )3 D 0(k 1 p) D 6 (k, z ) (52)

The momentum p in Fig. 2c is p 5 p1 1 p2. The vertices in Fig. 2d and 2f

have the same structure with momenta p 5 p1 1 p3 and p 5 p1 1 p4.

The divergent part of each of these vertices is equal to

G div
4) 5 2

l 2
R m 4 2 n

16 p 2(n 2 4)
(53)

For the renormalization of the model we assume that d l , d m2, and the field

renormalization constant Z are written as series [24]:

d l 5 o
`

i 5 1
o
`

j 5 i

aij

(n 2 4)i l R j (54)

d m2 5 m2
R o

`

i 5 1
o
`

j 5 i

bij

(n 2 4)i l R
j (55)

and
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Z 5 1 1 o
`

i 5 1
o
`

j 5 i

cij

(n 2 4)i l R j (56)

The mass and vertex counterterms and renormalization constant Z (the coeffi-

cients aij, bij, cij ) are chosen from

Z[ p2 1 m2
B 2 ( ] 5 finite (57)

and

Z 2 F o
4 2 vertex

G 4 1 O( l 3
R)G 5 finite (58)

in the limit n ® 4.

The mass counterterm to the order l R is found from (57) with the

contribution at Fig. 1b in S . Putting Z 5 1, we get the equation for the

inverse propagator:

S 2 1( p2, z ) 5 p2 1 m2
R 1 d m2 1

l R

16 p 2

m2
R

(n 2 4)
6

l R

2
m 4 2 n ( 6 ( z ) (59)

To find the counterterm d l write the sum of vertices in Fig. 2

G tot
4) ( pi, z ) 5 2 l R m 4 2 n 2 d l m 4 2 n 2

3 l 2
R m 4 2 n

16 p 2(n 2 4)

6 ( l R m 4 2 n)2[ V 6 (t, z ) 1 V 6 (u, z ) 1 V 6 (s, z )] (60)

where s 5 p1 1 p2, t 5 p1 1 p3, and u 5 p1 1 p4.
From Eqs. (59) and (60) we get

d m2 5 2
l R

16 p 2

m2
R

(n 2 4)
(61)

and

d l 5 2
3 l 2

R

16 p 2(n 2 4)
(62)

Assuming S 2 1 ( p2 5 0, z ) 5 m 6 ( z ) and l 6 ( z ) 5 2 G tot
4) ( pi 5 0, z ), we find

the equation for the mass parameter and coupling constant for nontrivial

topology up to the order O( l 2
R):

m 6 ( z ) 5 m2
R 6

l R

2
( 6 ( z ) (63)

and
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l 6 ( z ) 5 l R 7 3 l 2
R V 6 ( z ) (64)

The equality V 6 ( p 5 0, z ) 5 V 6 ( z ) results from Eqs. (35) and (52).

To obtain the divergent contributions of the order l 2
R to the self-energy,

we compute the sum of divergent contributions from Figs. 1c±1g:

S 5 2 d l
m2

R

2(16 p 2) F 2

(n 2 4)
1 g 2 1 1 ln

m2
R

4 p m 2G
2 d m2 l R

2(16 p 2) F 2

(n 2 4)
1 g 1 ln

m2
R

4 p m 2G
2

1

(16 p 2)2

m2
R l 2

R

(n 2 4)2 2
m2

R l 2
R

2(16 p 2)2

1

(n 2 4) F 2 g 2 1 1 2 ln
m2

R

4 p m 2G
2

1

(16 p 2)2

m2
R l 2

R

(n 2 4)2 2
m2

R l 2
R

(16 p 2)2(n 2 4) F g 2 1 1 ln
m2

R

4 p m 2G
1

1

(16 p 2)2

l 2
R

12(n 2 4)
( p2 1 6m2

R)

7
1

2
m 4 2 n F d l 1

3 l 2
R

16 p 2(n 2 4)G S 6 ( z )

6 l R m 4 2 n F d m2 1
l Rm2

R

16 p 2(n 2 4)G V 6 ( z ) (65)

Equation (65) is simplified for d l and d m2 in the forms (61) and (62). The

parameters a12 and b11 of counterterms (54) and (55) are

a12 5 2 3(16 p 2) 2 1, b11 5 2 (16 p 2) 2 1 (66)

In this case divergent terms in S do not depend on topology and are written as

S 5
2

(16 p 2)2

l Rm2
R

(n 2 4)2 1
l 2

R

(16 p 2)2

1

12(n 2 4)
( p2 1 6m2

R) (67)

The renormalization of the total inverse propagator to the order l 2
R may

be done with the equation

Z[p2 1 m2
R 1 d m2 2 S ] 5 Z F 1 1 2

l 2
R

(16 p 2)2

1

12(n 2 4) 2 ( p2 1 m2
R)

1
l 2

Rm2
R

(n 2 4)2 1 b12 2
5

12

1

(16 p 2)2 2



Scalar l f 4 Model with Nontrivial Topology 2525

1
l 2

R

(n 2 4) 1 b22 2
2

(16 p 2)2 2 G (68)

It gives

b12 5
5

12

1

(16 p 2)2 , b22 5
2

(16 p 2)2 (69)

and the nontrivial field renormalization constant

Z 5 1 1
l 2

R

(16 p 2)2

1

12(n 2 4)
(70)

The above results show that the model is renormalizable in two loops with

nontrivial space-time and the renormalizability may be done with topologi-

cally independent counterterms, i.e., counterterms of the standard Euclid-

ean model.
The nontrivial contributions of Fig. 1 to the two-point Green’ s function

lead to a z dependence of the mass parameter, e.g., the topologically dependent

mass-squared to O( l 2
R) is written as

m2
6 ( z ) 5 m2

R F 1 6
l R

2
F 6 (mR z ) 1 O( l 2

R)G (71)

The Asymptotics of F 6 (mR z ) for (mR z ¿ 1) is given by (A.28). It gives

m2
( 1 )( z ) 5 m2

R 1
l R

24 z 2 2
l R

8 p
mR

z
1 . . . (72)

for untwisted and

m2
( 2 )( z ) 5 m2

R 2
l R

48 z 2 2
l R

16 p 2 m2
R ln(mR z ) 1 . . . (73)

for twisted fields.

The asymptotics of the coupling constant (64) is written with Eq.
(A.24) as

l ( 1 )( z ) 5 l R 2
3 l 2

R

16 p 1 1

mR z 2 2
3 l 2

R

16 p 2 ln 1 mR z
4 p 2 1 . . . (74)

for untwisted and

l ( 2 )( z ) 5 l R 2
3 l 2

R

16 p 2 ln 1 mR z
p 2 1 . . . (75)

for twisted fields.
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Therefore the nontrivial topology influences the behavior of the coupling

constant and the mass parameter.

3. ASYMPTOTIC PROPERTIES OF THE MODEL

The renormalization procedure for the l f 4 model with nontrivial topol-

ogy is similar to the renormalization procedure for the finite-temperature
model [25, 31]. In case of nontrivial topology the renormalized n-point vertex

function G (n)
R is connected with unrenormalized one G (n) through the relation

G (n)
R ( p, z ; l R , mR , m , z 0)

5 Z n/2( l B , mB , L , m , z 0) G (n)( p, z ; l B , mB , L ) (76)

where Z is the wavefunction renormalization factor, and l R and mR are the

renormalized coupling constant and mass parameter at the renormalization

point ( m , z 0). If the renormalization point changes, then the physical parame-
ters of the model also change because the physical theory does not depend

on the renormalization point at which we renormalize the theory.

The equations which demonstrate how the renormalized vertex functions

change when we change the renormalization point can be found from (76)

and written as

F m -
- m

1 b ( l R)
-

- l R

1 mR g m
-

- mR

2 n g G G (n)
R ( p, z ; l R , mR , m , z 0) 5 0 (77)

and

F z 0
-

- z 0

1 b ( l R)
-

- l R

1 mR g m
-

- mR

2 n g G G (n)
R ( p, z ; l R , mR , m , z 0) 5 0 (78)

The coefficients in these RG equations are defined by

b 5 m
- l R

- m
, mR g m 5 m

- mR

- m

g 5 m
-

- m
ln ! Z (79)

and

b 5 z 0
- l R

- z 0

, mR g m 5 z 0
- mR

- z 0

g 5 z 0
-

- z 0

ln ! Z (80)



Scalar l f 4 Model with Nontrivial Topology 2527

Now one can use the results obtained in Section 2 to consider the behavior

of the running coupling constant with respect to the variation of the topological

parameter z . The b -functions for different topologies may be found in the
asymptotic regime (mR z ¿ 1) from (74), (75), and (80) in the following form:

b ( 6 )( l R) 5 H (3 l 2
R /16 p 2) (1 2 p et)

3 l 2
R /16 p 2 (81)

where the parameter t is given by t 5 2 ln(mR z ).

The solutions of the differential equation

d l R(t)

dt
5 b ( 6 )( l R) (82)

with b ( 6 ) functions (81) lead to the running coupling constant for untwisted

and twisted fields, respectively:

l ( 1 )
R ( z ) 5

l R

1 1 (3 l R /16 p 2)[( p /mR)( z 2 1 2 z 2 1
0 ) 1 ln( z / z 0)]

(83)

and

l ( 2 )
R ( z ) 5

l R

1 1 (3 l R /16 p 2) ln( z / z 0)
(84)

This result predicts the same form of topological behavior of the coupling

constant as Eqs. (74) and (75).

4. CONCLUSION AND COMMENTS

We have considered the scalar self-interacting l f 4 model with nontrivial

space-time in the perturbative regime. The space-time structure of this model

was proposed as geometrically flat with topology S1 3 R3. Space-time topol-

ogy in this case admits twisted and untwisted configurations for self-inter-

acting fields with different properties of the physical parameters for each
field configuration. The model is renormalizable in two loops and, as follows

from Eq. (72), the effects of nontrival topology lead to the increase of the

topology-dependent mass with the decrease of the topological parameter for

untwisted field, or to the generation of the mass m2( z ) ’ l R(24 z 2) 2 1 for this

field configuration, if the initial field is massless on the tree level. Equation
(73) predicts the decrease of the topology-dependent mass of the twisted

field with the decrease of the topological parameter and the elimination of

the mass for the value of the critical parameter z cr ’ ( l R /48m2
R)1/2. As follows

from (74) and (75), the asymptotic behavior of the coupling constant is

different for untwisted and twisted fields. For the untwisted field the coupling



2528 Igor Kulikov

constant decreases and for the twisted one it increases if the topological

parameter z of space-time decreases. The effects of nontrivial topology

become stronger with the decrease of the topological parameter. It leads to
an essential variation of physical parameters in comparison with the results

for this model in space-time with trivial topology. In the limit z 2 1 ® 0 the

coupling constant will obey only Eq. (77), and the asymptotic properties of

the coupling constant will be connected only with momentum scaling.

The temperature dependence of the mass parameter and of the coupling

constant for a thermal scalar field at the high-temperature limit mR /T ¿ 1
coincides with the untwisted field results (72) and (74) for z 2 1 5 T :

m2(T ) 5 m2
R 1

l R

24
T 2 2

l R

8 p
(mRT ) 1 . . . (85)

and

l (T ) 5 l R 2
3 l 2

R

16 p 1 T

mR 2 2
3 l 2

R

16 p 2 ln 1 mR

4 p T 2 1 . . . (86)

The technique used in this work seems more convenient then the sum compu-

tation in Feynman integrals for this model in the perturbative regime [12, 19].
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APPENDIX

In this section we find the asymptotics of the topological contributions

in the mass parameter and coupling constant.

1. The topologically nontrivial contribution S 6 ( z )to the self-energy is

S 6 ( z ) 5 # d 4k

(2 p )4 D 6 (k, z )

5 # d 4k

(2 p )4

2 p i d (k2 1 m2
R)

exp( z ) k1 ) ) 7 1
(A.1)

Let us introduce the new variable x 5 ik1, assume s 2 5 k2 1 m2
R, and write

the d -function as

d (k2 1 m2
R) 5 d (x2 2 s 2) (A.2)

Then
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S 6 ( z ) 5 # d 3k

(2 p )3 # dx
d (x2 2 s 2)

exp( z ) x ) ) 7 1
(A.3)

Using the equation

d (x2 2 s 2) 5
1

2 s
[ d (x 2 s ) 1 d (x 1 s )] (A.4)

we get the integral over the x in (A.3) in the form

# dx
1

exp( z ) x ) ) 7 1
d (x2 2 s 2)

5
1

2 s # dx
1

exp( z ) x ) ) 7 1
[ d (x 2 s ) 1 d (x 1 s )]

5
1

s (exp( z s ) 7 1)
(A.5)

Then S 6 ( z ) will be

S 6 ( z ) 5 # d 3k

(2 p )3

1

( ! k2 1 m2
R)[exp( z ! k2 1 m2

R) 7 1]
(A.6)

The final form for this contribution is written as

S 6 ( z ) 5
1

2 p 2 z 2 #
`

0

z2 dz

! z2 1 ( z mR)2{exp[ ! z2 1 ( z mR)2] 7 1}
(A.7)

2. The Function V 6 ( z ) has the following form:

V 6 ( z ) 5 # d 4 k

(2 p )4 D 0(k) D 6 (k, z ) (A.8)

Let us introduce the variable x 5 ik1 and rewrite (A.8) as

V 6 ( z ) 5 2 # d 3k

(2 p )3 # dx
1

(x2 2 s 2)[exp( z ) x ) ) 7 1]
d (x2 2 s 2) (A.9)

With the help of (A.4) the integral over x is written as

# dx
d (x2 2 s 2)

(x2 2 s 2)[exp( z ) x ) ) 7 1]

5
1

2 s # dx
1

(x2 2 s 2)[exp( z ) x ) ) 7 1]
[ d (x 2 s ) 1 d (x 1 s )] (A.10)

We can compute the first integral of (A.10)
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1

2 s # dx
1

(x2 2 s 2)[exp( z ) x ) ) 7 1]
d (x 2 s ) (A.11)

using the expansions

1

(x 2 s )(x 1 s )
5

1

D x F 1

2 s
2

1

2 s 2 D x 1 ? ? ? G (A.12)

and

1

exp( z ) x ) ) 7 1
5

1

exp( z ) s 1 D x ) ) 7 1

5
1

exp( z s ) 7 1
2

z exp( z s )

[exp ( z s ) 7 1]2
D x 1 ? ? ? (A.13)

where D x 5 x 2 s . Now it is possible to find the principal part of (A.11),

1

2 s # dx
P

(x2 2 s 2)[exp( z ) x ) ) 7 1]
d (x 2 s )

5
1

4 s # dx
P

D x F 1s 2
D x

s 2 1 ? ? ? G
3 F 1

exp( z s ) 7 1
2

z exp( z s )

[exp( z s ) 7 1]2
D x 1 ? ? ? G d ( D x)

5 2
1

4 # dx
P

D x
d ( D x) D x F 1

s 3[exp( z s ) 7 1]
1

z exp( z s )

s 2[exp( z s ) 7 1]2G
5 2

1

8 F 1

s 3[exp( z s ) 7 1]
1

z exp( z s )

s 2[exp( z s ) 7 1]2G (A.14)

where the principal part of the integral over the variable x is

# dx
P

D x
d ( D x) D x 5

1

2
(A.15)

The result of the integration is written as

# dx 1 P

x2 2 s 2 2 1

exp( z ) x ) ) 7 1
d (x2 2 s 2)

5 2
1

4 s 3[exp( z s ) 7 1]
2

z exp( z s )

4 s 2[exp( z s ) 7 1]2 (A.16)
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The second term in (A.10) gives the same contribution due to the symmetry

(x ® 2 x). Equation (A.9) becomes

V 6 ( z ) 5
1

4 # d 3k

(2 p )3 F 1

s 3[exp( z s ) 7 1]

1
z exp( z s )

s 2[exp( z s ) 7 1]2G (A.17)

Integrating (A.17) by parts, we get V 6 ( z ) in the form

V 6 ( z ) 5
1

8 p 2 #
`

0

dz

! z2 1 (mR z )2[exp ! z2 1 (mR z )2 7 1]
(A.18)

3. To find the asymptotics of (A.7) and (A.18), consider the integrals

I 6 (a) 5 #
`

0

dz

! z2 1 a2(exp ! z2 1 a2 7 1)
(A.19)

and

N 6 (a) 5 #
`

0

z2 dz

! z2 1 a2(exp ! z2 1 a2 7 1)
(A.20)

The expansions (m z ¿ 1) for I 6 ( z ) are found with help of the equations

1

exp(u) 2 1
5

1

u
2

1

2
1 2 o

`

n 5 1

u

u2 1 4 p 2n2 (A.21)

and

1

exp(u) 1 1
5

1

2
2 o

`

n 5 1

u

u2 1 p 2(2n 1 1)2 (A.22)

Multiplying the integrand of (A.19) by x 2 e , using the expressions (A.21) and

(A.22), and integrating term by term letting e ® 0 at the end, we obtain the

asymptotics of V 6 ( z ) in the form

I 6 ( z ) 5 5
p
2a

1
1

2
ln 1 a

4 p 2 1
g
2

1 ? ? ?

2
1

2
ln 1 a

p 2 2
g
2

1 ? ? ?
(A.23)

Then the expansion for V 6 ( z ) is
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V 6 ( z ) 5 5
1

16 p 1 1

mR z 2 1
1

16 p 2 ln 1 mR z
4 p 2 1 ? ? ?

2
1

16 p 2 ln 1 mR z
p 2 1 ? ? ?

(A.24)

The contribution N 6 (a) is found from

-
- a2 N 6 (a) 5

1

2
I 6 (a) (A.25)

Integrating (A.25) over the variable a with expansion (A.23), we get

N 6 ( z ) 5 5 2
p
2

a 2
a2

4
ln a 1

a2

8
(1 2 2 g 1 2 ln 4 p ) 1

p 2

6
1 ? ? ?

a2

4
ln a 2

a2

8
(1 2 2 g 1 2 ln p ) 1

p 2

12
1 ? ? ?

(A.26)

As a result we can write the equation for ( ( z ) in the form

( 6 ( z ) 5 m2
RF 6 (mR z ) (A.27)

where the function F 6 has the following expansion:

F 6 (a) 5 5 2
1

4 p a
2

1

8 p 2 ln a 1
1

16 p 2 (1 2 2 g 1 2 ln 4 p ) 1
1

12a2 1 ? ? ?

1

8 p 2 ln a 2
1

16 p 2 (1 2 2 g 1 2 ln p ) 1
1

24a2 1 ? ? ?

(A.28)
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