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Scalar Ad* Model with Nontrivial Topology

Igor Kulikov'

Received May 19, 1999

Effects of nontrivial topology S' X R® of space-time for a scalar self-interacting
Ad* model in the perturbative regime are discussed. Asymptotic properties of the
coupling constant for untwisted and twisted field configurations are investigated.

1. INTRODUCTION

Quantum field models are sensitive to both the local and the global
space-time structures. The local structure of space-time is connected with
curvature, and the global one with topology. The interest in models with
nontrivial geometries and topologies is based on the attempts to describe the
interaction of quantum fields with gravity [1-3], and (or) in the presence of
surfaces [4—8]. The role of topological structure of the space-time manifold
was considered in a number of articles: interacting quantum fields in the
perturbative regime were studied in refs. 9-13 with regard to the symmetry
breaking and mass generation in self-interacting and gauge models, the prob-
lem of vacuum polarization and causality in electrodynamics [14], and in
models with dynamical symmetry breaking in the nonperturbative regime
[16, 17].

The renormalization of interacting quantum fields with periodic (antipe-
riodic) identification in one of the spatial coordinates [12, 15] in the perturba-
tive regime includes a topological parameter, and the topology influences the
behavior of physical parameters of the models. The construction of thermo
field models is also connected with changing the initial space-time structure
of field models through the introduction of the temperature by compactifica-
tion of the time coordinate, which allows one not only to construct the
thermodynamics of quantum systems [18], but also to study the variations
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of physical parameters of these models with temperature [19-21], finite-
temperature mass corrections for the electron in QED [22], plasmon mass in
the relativistic fermion gas [23], symmetry restoration and phase transitions
[26, 27, 29], etc. From the technical point of view thermal field models and
field models with nontrivial topology of space-time with one parameter can
be treated in the same manner. The nontrivial topology as well as temperature
corrections affect the Green’s functions of the fields without any radical
changing of the Feynman rules, which allows us to use the methods of
standard quantum field theory [28].

The purpose of this article is to study scalar-field model with Ad*
interaction in space-time with nontrivial topology in perturbation theory; to
consider the problem of renormalization of the model in space-time with
S' X R® topology; to study the behavior of the physical parameters of the
model with respect to scaling the topological parameters; and to consider the
finite-temperature regime for this model.

The study of this model from the aspects mentioned above might offer
new insight into the structure renormalizations and dependence of the physical
parameters of quantum field models on the topology in perturbation theory.
The method used for renormalization of this model is based on the loop
computations with the Feynman propagator similar to its “real time” form
of thermo field dynamics (TFD) [22, 26, 30] and minimal subtraction renor-
malization procedure [32, 24]. Such a formulation of the Feynman propagator
considerably simplifies computations of Feynman graphs and the procedure
of renormalization, making them similar to relatively straightforward methods
of TFD. In order to study the behavior of the coupling constant of the model
we use the modified renormalization group (RG) technique which affects the
topoligical structure of the space-time.

The article is organized in the following way. Two-loop renormalizations,
the structure of counterterms, and the behavior of physical parameters of the
self-interacting A$* model in S' X R* space-time topology with untwisted
and twisted field configurations are considered in Section 2. Asymptotic
properties of the model are analyzed in Section 3. The connection with finite-
tempereature field theory and the properties of the model are discussed in
Section 4.

2. RENORMALIZATIONS OF A¢* MODEL WITH
NONTRIVIAL TOPOLOGY

In this section, we consider the methods of two-loop renomalization of
the scalar self-interacting A@* model with S' X R*topology. Let the Euclidean
unrenormalized Lagrangian be written as
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A
L0 — L mie? = 2 ¢ 1)

where mp and Ap are bare mass and coupling constants.
To develop the perturbation formalism for the model we assume

my = dm* + mx
=38\ + Az (2

where mpg and Ay are the renormalized mass parameter and the coupling
constant, and 8»* and S\ are mass and coupling constant counterterms. Then
one can write (1) as the sum of unperturbed and interacting parts

L=1I+ Ly (3)
where
1 1
L=-, (09)* — gm%ecbz 4)
S’ A
L = =05 97 = 0 ¢ 5)

Let us introduce the topology S' X R’ in flat space-time by making a
compactification with respect to one spatial coordinate x' € [0, {]. This
topology allows us to introduce untwisted and twisted fields as ¢(x' = 0, x)

= +o(x' = ¢ x).

The generating functional of the model will have the following form:

4
Z4Q) = J D¢ exp U dx' J dx (U, 0p) + ¢(X)J(X))] (6)
b==¢ 0 R
The quadratic part of this action is
1 (¢
—-J dx' J d’x [(09)* + mzd] (7)
2, 2
To get the Feynman propagator from Sy we expand ¢(x', x) in a Fourier series

d(x', x) = é nZw (2 )3 —— > expliox + ikx]d,(k) (8)

where

o, :{(27#(;)(71 + 1/2) )

Qr/iln

defines periodic and antiperiodic field configurations.
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With the help of the equation
L0 .
C dx CXp[l((&)n - (l)n’)-x ] - 8nn' (10)
0

we write the quadratic part of the action

©

Zw (2n)3 oK) + k> + mBld—u(—k) (11)

or in the form of a scalar product on function space as

1
— (0. DY) (12)

where
D = o + k* + mk (13)

The Feynman propagator A in the momentum space is connected with D by
the inverse transform; therefore

1

Ao, Ky =—F—""F7——
(@n, k) o2 + k* + ik

(14)

and in the position space we get

3 _ w1 _
Ar(x — x') = ZJ I’k explio(x' — x' + zk(x x')] 15)

2n)’ or + k> + mk

This expression may be written in as

dY% 1
Ar(x) = J o) W explikx] (16)

where the momentum is k, = (®,, k) and the symbol of integration is

dk 1 & d’k
L(zn)“ =2 J (2my’ ("

Adding here the vertex coupling constant in the form (—Ag) and the expression
for the d-function

'K, K2, .. ) = 21)CBa,, 0. O (KL K L) (18)

we completely define the modifications for Feynman rules at S' X R’
space-time.
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An alternative way to study this model in the perturbative regime is
based on the modification of the Feynman propagator to the four-dimensional
momentum form

A(x, §)

19
(2) (19)

with

1 21K + m%)
+
R+ my— expQkl]) F 1

where Ao(k) is the standard form of Feynman propagator, and A+(k, ) are
topologically dependent contributions. This form of tree-level propagator does
not include the summation and is convenient for perturbative computations.

To make renormalizations of the model we will use the propagator in
the form (20) and vertex (—)»Ru“_”), where the mass parameter | makes the
coupling constant dimensionless for n # 4. Two and four 1 P.I. point vertices
are shown in Figs. 1 and 2.

The contribution of Fig. 1b of the order Ag to the self-energy is

Ak, ) = = Ao(k) = A<(k, ©) (20)

(b) _— —n
9O =7 '™ | oo
— _LR 4—n 4—n
o B (2 ) (2 )

We write the first integral of (21) with the help of the equation

x +£>

a) b)

0.0.98

c) d) f) 8)

Fig. 1. Diagrams contributing to the self-energy.
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><+><+>Q<+§§ ><

a) b) ¢)

Fig. 2. Vertex diagrams.

J d"k 1 1 I'(d—=n/2) 1 (22)

(2,}.[)11 (k2 + M2 + ka)d = (4,}.[)11/2 F(d) (M2 _ p2)d—n/2

in the form

l _ 4—n d'k ;
5 (Thant )J(2n)” i+ nik

_1 4, 1 I'd —n2) 1
) ( )\’RI”L ) (47[)11/2 1"(1) (m%a)l—n/Z
2-2
_ A _mz \_mk n
2 (167r2 4’ I 2 (23)
Using the expansions
F(l_g):nifry_l 4

and

o Y22 i 2
_MR_ _ n_ R n_
(wj 1+(2 2)1n4nu2+o((2 2)) 09

we find the resulting equation for Fig. 1b as

2 2
b) - _ MR 2 _ MR
RO = —he3, |:n R 4nu{|
A _
¥ —2" TREON(a) (26)
where
(4%

540 = J peed Y @7)

is a function of the parameter C.
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Now we compute contributions of the second order of perturbation

The diagram of Fig. lc is

(C) _— 8)\/41/1
Q) =5 o™ | 55

— _@ 4—n —)\’ 4—n d"k
, M (2 ) 5 J(zn)n As(k, C) (28)

The first integral is found the same way as before. It gives

2 2
(C) mR 2 MR
——ry 141
2@ = -3, |:n —4 7 n 47tu2:|

_ 8k
, M DI (&)

(29)

The contribution of Fig. 1d is

T9¢) =+ - 2
M© = L ot onr J e S(Re

[AS(k) + 2A0(A (K, §) + Ai(k, §)] (30)

4—n 2 d"k
(Arp* " "0m 2y

_1
2
The first integral is

1 _ d"k 1

24 )\/ 4—n 8 2

5 (hat” )om J(zn)" (K + m)?

aen on? T —n/2) 1
()\’RI”L ) (47.[:)11/2 1"(2) (m2R)2—n/2

/2 =2
— )\/R 2 m%{ _ ﬂ
o Om ((4@2)) F(z 2) (31)

1
2

Using the expression

F(z - ) 2 (32)

and expansion (25), we find
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| . Lk |
ES )L 4—n 8 2 PR L T
5 (Ark )om J(zn)" (& + m)?
Az o - 2 — 4 _mr
= s | — - |+ ==
02 | Thi—a Y > Man? (33)

As a result we get the expression for the divergent part of Fig. 1d in the form

A 2 i
IS¢ = 27’12 St [n L tr+h 47”’12]

+ Ar(SmHp " "Q (L) (34)

where

Q. =

(2 ) (35)

is a finite function.
The two-loop contribution Fig. 1f is

Ch 40 jogooag. ) (36)

() :l _ 4—n\2
D@ =4 Cr'™ [ o ony

The divergent terms are found from

1 - d"k _d"
IS =7 Q' ™y O B3 Ag)

2m)" 2m)"
l 4—n\2 d"k —q—d
+ Z(KRH ) Qny" (2n) Ao(k)Ao(q)A+(k, )
l 4—m2 d"k —q—d
+ 4()»141 ) Qn) 2n)" As()A (g, ©) (37)

Rewrite (37) as

1 - d'k_ _d"
Q) =, (—hau' ™’ oo BiAg)

2m)" 2m)
1
5 |:()\/RH4 I’l)

l 4—n d 2
ol [ )Ja) o(k)] z.(0) (38)

The first integral of the above expression is

(2)
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d"k
2nm)" 2n)"

L4 A2 Ao(q)

2519

_)‘_%? 4—n [ _d"k 2 4 | d"q
= [u | eny o(k) [u J(zn)n Ao(q)
)L%e | m%e n/2 =2 " m%e i /2=2
:: |:167t2 4mp’ e _E 167 | 4np’ ra —n/2):|

2
R

Aty

e
mzl| 2 —

n

2

I

2
—4

|l

2

_ oM 1 Y2
*al16m? n—4

_ ke[ 1 4
®a | 16m?

|:(n—4)2 + (n—4)

l_ﬂ

2

|

mk
aind B ARG e
2y =1+ 2m2E | (39)
Y n47tu2

The next two integrals are computed in the same way and the result for
divergent contributions in (36) is

A%

2

Oy — _ MR
F2) (C) (167.[:2)2 (n _ 4)2
Ak mk mk
T (167 (n—4) [27 I+2n 47tu2:|
M 1, Mk 1,

The contribution of Fig. 1g is written as

Ll 44 G NG OAK+ g +p.0) (@4D)

(2) = l — 4-m2
F2) (p, C) 6 ( )LRH ) ) (275)” (27[)”

Divergent terms in this integral are written as
dq

[ d"k !
| ey any Ao(k)Ao(q)Ao(k +q + p)

(—ARu“‘")QJ T 420\ Ak + g+ p)ho(g)

1 _
(0.0 = (—han* ™"y’

1

*

(o)}

2m)" (2m)"

d"'k _d"q
n n Ai(qa
(2n)" (2m)

+ l(_)LR 4—n)2

p DAk + g + p)
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Ly s L
=g [ bt 40 @

The first integral of the above expression does not include the topological
contributions. Its divergent part is written as

l _ 4—n\2 d’k an—
L (gt J o o DA g+ p. O

Ak ( mk )n_4 mk Ak 1

- +
(a6md? | 4np® | (n—4)* (167 (n—4)
2 2
D | IR _ 2
< |5+ - l)mR:| +
2 2 2
_ MR mR AR 1 ) )
(1612 (1— 4 T 1201670 (n— 4y P~ T 6
_ Ak _mk mx
T (16m) (n—4) [y — it 47tu2:| T “43)

The sum of the contributions with topological parameter is

l _ 4—n\2 d"k an_
P Arp™™") J n) Qny’ As(k, O)Ao(k + g + p)Ai(q)

l _ 4—n\2 d"k an—
+Lca >Jam”mme¢mwa+q+m

l _ 4—n\2 d”k an—
+Lca )Jam”MyMwM@&M+q+mQ

3 ny 2=® 9

M ™" [ d'k
2mn)"

2

1 2 2
+(p + P —
x[ 2 +y+;J dy In MEt o & K> — )

(n —4) 3 ] 41t
: R+ (p — kX1 —
+ lj dx In nie t (p )QX( X):| (44)
3 ] 4t

Combining the divergent terms of Fig. 1g, we get
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Y mk Ak 1
(z) 2 2
PG = T (n — 47 T (6 1200 — 4y P T Omw)
A% i i
(1672 (n — 4) [y I+ 47tu2:|
DY TN
(@ 45)

The contribution of Fig. 2c to the four-point vertex is

re _1 2 | 4k
M. 0 = 3 (~h )J(W A + p)

=3 (') (2 )
£ (gt : é’;];n A(Bolk + p)
L gty : é’n’; oAk + p)
L iy : (g’n’; AA=k +p)  (46)

Rewrite the first integral with the help of the equation
1
L_ (. 1 :
ap  Jo  lox + Bl — x)]

(47)

as

l_ 4—m2
2()well ) (2)

:l_ 4n J J > 1 (48)
2 Qm)" [(k +2pkx+(mR+px)]

Using (22), (25), and (32), we find

(2m)
by _ ! mx + g2x!1 —X)
== H4 "F(Z-g)ﬁ dx |: £ 2 :|

Lnp oy J L ARy Aok + p)

n/2—=2

32m? 41t
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Ay ! 2 n—4 mk+px(1 —x)
=k L dx [ — y:| [1 LR — }49)
1

S (R )2

Then

(2 )
)L2 )L2 1 2+ 2 1 —
= AR ] - 4_”|:y+delnm_u_lR = x:|(50)
0 4mp

16t -4 M

As a result we find

2

(6) h 1
22 ! mk + p’x(1 — x)
Ty w Ty + L dx In sy :|
+ (eut Qe (p) (51)
where
Qu(p,0) = (2 ) +(k, ©) (52)

The momentum p in Fig. 2c is p = p; + p». The vertices in Fig. 2d and 2f
have the same structure with momenta p = p; + p3 and p = p1 + pa.
The divergent part of each of these vertices is equal to

Fdiv_ _)L%{&
W= —

167 (n — 4) (33)

For the renormalization of the model we assume that SA, 8m?, and the field
renormalization constant Z are written as series [24]:

Sk = Z Z?T) A&/ (54)
dnm® = mk IZ /Z;(n_}ijT) Y (55)

and
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=1+ H__JT))LR (56)

The mass and vertex counterterms and renormalization constant Z (the coeffi-
cients aj;, by, ¢;;) are chosen from

Zp* + mp — 2| = finite (57)

and

z? [ I, + O(MQ)] = finite (58)
4—Vertex

in the limit n — 4.

The mass counterterm to the order Ar is found from (57) with the
contribution at Fig. 1b in X. Putting Z = 1, we get the equation for the
inverse propagator:

_ A A 4
If 2 oy — 2 2 2 AR 4y
=p* + mk+ & + S. 5
SO = 5 S+ TS £ SR (59)
To find the counterterm OA write the sum of vertices in Fig. 2
3Agu "
lol ; = —) 4—n __ SA 4—n __ OARKL

£ A Q(1, §) + Qu(u, §) + Qu(s, Q] (60)

where s = p1 + p2, t = p1 + p3, and u = p1 + pa.
From Eqgs. (59) and (60) we get

2

Sni = __)VR_zﬂ (61)
167> (n—4)
and
S\ = 3 62
16T (n — 4) (62)
Assuming ! (p? = 0, §) = m+() and A+(Q) = =T (p; = 0, §), we find

the equation for the mass parameter and couphng constant for nontrivial
topology up to the order O(A%):

me(©) = mk + 22 3.0 (63)

and
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A+(©) = Ar F 30200 (64)

The equality Q+(p = 0, {) = Q+(C) results from Egs. (35) and (52).
To obtain the divergent contributions of the order A% to the self-energy,
we compute the sum of divergent contributions from Figs. 1c—1g:

2 2
_ MR 2 _ mR
2= 06w [ Y T TN
)LR 2 m%@
o2
RUIPYTPEN PRI A e

2)L 2)L2 2
1 MRAR MRAR 1 |:27—1+21n mR2:|

C6m) (n — 4 201672 (n — 4) 4mtp
1 mpAR Ak 141 mk

(16m%* (n — 4> (167’ (n — 4) v 1 4’

1 )M%% 2 2
e 12 — 4y P T )
1o, _ 3k
TR e —ay [ 2@
_ )LRm%(

4 4—n 2 —_— K .
+ At S + e — 4) Q. (65)

Equation (65) is simplified for SA and m? in the forms (61) and (62). The
parameters a;; and b;; of counterterms (54) and (55) are

ap = =3(16n?)~", by = —16m?)7! (66)
In this case divergent terms in X do not depend on topology and are written as

_ 2 bk Mg 1
(1672 (n — 4)>  (167%)* 12(n — 4)

(p* + 6m7) (67)

The renormalization of the total inverse propagator to the order Ak may
be done with the equation
Ak 1
(16m>* 12(n — 4)

N Aimk b 51
m—4""% 12 (16w

Z[p2+m%g+5m2—2]=2|:(1 )(p2+m%g)
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Az 2
+ by ——= 68
n—4|"7  (16m)> (68)
It gives
5 1 2
by === R e 69
212 (161> 27 (16w (69)
and the nontrivial field renormalization constant
0y 1
Z=1+—= (70)

(16m%)* 12(n — 4)

The above results show that the model is renormalizable in two loops with
nontrivial space-time and the renormalizability may be done with topologi-
cally independent counterterms, i.e., counterterms of the standard Euclid-
ean model.

The nontrivial contributions of Fig. 1 to the two-point Green’s function
lead to a € dependence of the mass parameter, e.g., the topologically dependent
mass-squared to O(A%) is written as

(@) = mr |1 % %" F+(mil) + O(\%) (71)

The Asymptotics of Fx(mgl) for (mgl < 1) is givenby (A.28). It gives

A Agr m
miny(§) = mk + —3-24(;2 — EIR—C" + ... (72)
for untwisted and
2 _ o, A Ae o,
mi—(§) = mz 48(;2 L6 mg In(mgl) + . .. (73)

for twisted fields.
The asymptotics of the coupling constant (64) is written with Eq.

(A.24) as
MH(C)ZM_%(&)_;_%IH(%)_F"' (74)
for untwisted and
A~ () = Ar — 136);%2 In (mnxg) + ... (75)

for twisted fields.
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Therefore the nontrivial topology influences the behavior of the coupling
constant and the mass parameter.

3. ASYMPTOTIC PROPERTIES OF THE MODEL

The renormalization procedure for the Adp* model with nontrivial topol-
ogy is similar to the renormalization procedure for the finite-temperature
model [25, 31]. In case of nontrivial topology the renormalized n-point vertex
function ' is connected with unrenormalized one '™ through the relation

(n)(PaC )\’Ra meg, l”L CO)
= 7" (g, mg, A, 1, C)T'"(p, G kg, mg, N) (76)

where Z is the wavefunction renormalization factor, and Ag and mpg are the
renormalized coupling constant and mass parameter at the renormalization
point (W, &o). If the renormalization point changes, then the physical parame-
ters of the model also change because the physical theory does not depend
on the renormalization point at which we renormalize the theory.

The equations which demonstrate how the renormalized vertex functions
change when we change the renormalization point can be found from (76)
and written as

0 0 o
hon ™ B(M)a o —nv] TR(p, G Ar,mr, 0, 5) =0 (77)

and

2 .
z;o +B<AR) ot et ==y [ TR, G e 1. G) =0 (78)

o

The coefficients in these RG equations are defined by

B = 8k mpm = L1 Omg
- Rim —
o’ op

v=ua In \Z (79)

and

B Co 8(; mRYm Co 8(;

7= “In NG (80)
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Now one can use the results obtained in Section 2 to consider the behavior
of the running coupling constant with respect to the variation of the topological
parameter {. The P-functions for different topologies may be found in the
asymptotic regime (mgl < 1) from (74), (75), and (80) in the following form:

- _ (Brr/167%) (1 — me)
where the parameter 7 is given by ¢ = —In(mgl).
The solutions of the differential equation
dip(t) _ =
= B (82)

with B(t) functions (81) lead to the running coupling constant for untwisted
and twisted fields, respectively:

A
(H) oy — R
e (©) 1 + BAr/16T)[(t/mr)(EC — &) + ()] (83)
and
O = . 5

1 + (3Ax/167%) In(&/Cp)

This result predicts the same form of topological behavior of the coupling
constant as Eqgs. (74) and (75).

4. CONCLUSION AND COMMENTS

We have considered the scalar self-interacting A¢* model with nontrivial
space-time in the perturbative regime. The space-time structure of this model
was proposed as geometrically flat with topology S' X R’. Space-time topol-
ogy in this case admits twisted and untwisted configurations for self-inter-
acting fields with different properties of the physical parameters for each
field configuration. The model is renormalizable in two loops and, as follows
from Eq. (72), the effects of nontrival topology lead to the increase of the
topology-dependent mass with the decrease of the topological parameter for
untwisted field, or to the generation of the mass n*(§) ~ Ax(24C%) ™" for this
field configuration, if the initial field is massless on the tree level. Equation
(73) predicts the decrease of the topology-dependent mass of the twisted
field with the decrease of the topological parameter and the elimination of
the mass for the value of the critical parameter ., ~ (Ar/48m%)"*. As follows
from (74) and (75), the asymptotic behavior of the coupling constant is
different for untwisted and twisted fields. For the untwisted field the coupling
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constant decreases and for the twisted one it increases if the topological
parameter C of space-time decreases. The effects of nontrivial topology
become stronger with the decrease of the topological parameter. It leads to
an essential variation of physical parameters in comparison with the results
for this model in space-time with trivial topology. In the limit ™' — 0 the
coupling constant will obey only Eq. (77), and the asymptotic properties of
the coupling constant will be connected only with momentum scaling.

The temperature dependence of the mass parameter and of the coupling
constant for a thermal scalar field at the high-temperature limit mgz/T < 1
coincides with the untwisted field results (72) and (74) for (;_1 =T:

m(T) = mk + Ao A (mgT) + . .. (85)
24 8T
and
B 3\k [ T 3hk [ me
MT) = g lm(mR oy el L (86)

The technique used in this work seems more convenient then the sum compu-
tation in Feynman integrals for this model in the perturbative regime [12, 19].
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APPENDIX

In this section we find the asymptotics of the topological contributions
in the mass parameter and coupling constant.
1. The topologically nontrivial contribution X+({)to the self-energy is

I A
240 = | oy 40

([ _d*k_ 2mid(E + mR)
- J @n)* exp(k']) F 1

Let us introduce the new variable x = ik', assume 6> = k> + mp, and write
the S-function as

(A.1)

S(K + mz) = (x> — &°) (A.2)
Then
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A 3 — o2
2.0 = J o) J exp((;x) _— (A.3)
Using the equation
dx* —o?) = i [3(x — o) + d(x + 0)] (A.4)

we get the integral over the x in (A.3) in the form

—1 2 2
de exp(h]) T 1 O — o)

_ L -1 _
= J dx exp((;‘x‘) - [0(x — ©) + O(x + O)]
N S
c(exp(Co) + 1)
Then X +(C) will be

3
3.0) = J - L — (A6

(A.5)

2n)* (\K + mh)exp(C\k> + mk) F 1]
The final form for this contribution is written as

2 dz

2.+(0) = ZRQCQJ \/ + (Gmlexp| \/Z + Gmp)) F 13 (A.7)

2. The Function Q+({) has the following form:

Q+ = A.8
0= | 5 (A8)
Let us introduce the variable x = ik' and rewrite (A.8) as
- _ ﬂ 1 2 <2
J ey | Y@ oo F 10 0 A

With the help of (A.4) the integral over x is written as

8 — o62)
(x — A)exp]) F 1]

_ 1 1 _
=2 J dx &~ s 7 1] [8(x —6) + 8(x + 6)]  (A.10)

We can compute the first integral of (A.10)
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ij N - 62)[ex1p(dxb ENTR A (A1
using the expansions
m=t [i—;Ax+---] (A.12)
and
1 B 1
exp(a)) 1~ explo + Ax]) T 1
1 _ __Cexp(Co)

T exp(o) F 1 [exp (Co) F I A+ (AD3)

where Ax = x — . Now it is possible to find the principal part of (A.11),

1 P B
20 J b e 7 1 0 @

1 P |1 Ax
=== |--=+
4GJ Y Ax |:G o

1 _ __Cexp(Co)

exp((s) T 1 [exp(Co) F 1T Ax 4 - [ 8(Ax)
_ 1 P 1 £ exp(Co)
T4 J ey d(ANAY Slexp(Co) F 1] | o’lexp(Co) T 1]2]
1 1 £ exp(o)

8 [olexp(Co) 7 1] N o’lexp(o) F 1) (A.14)

where the principal part of the integral over the variable x is

Jid 1
dx <~ 3(Ax)Ax =~ A.l5
J = (A A = (A.15)
The result of the integration is written as
)i 1

d 3 — o’

J x( X — o’ ) exp((;‘x‘) F1 "~ o)
_ 1 _ ¢ exp(Co) (A.16)

4c’lexp(lo) ¥ 1] 4o’ exp(lo) F 1]
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The second term in (A.10) gives the same contribution due to the symmetry
(x = —Xx). Equation (A.9) becomes

1 (4% 1
Q.0 = 4 J Qn)® [GS[CXP(CG) + 1]

L exp(lo)
o’lexp(lo) F 1)

(A.17)

Integrating (A.17) by parts, we get Q+({) in the form

_ 1 ” dz
Q.0 = o L Z + ) exp NP + () * 1] (A.18)

3. To find the asymptotics of (A.7) and (A.18), consider the integrals

("0 dZ
Ii(a) = A.19
+(@) Jo \/22 + a*(exp \/22 +a*F1) ( )
and
Ni(a) = [ 2 d; (A.20)
+ = .
a Jo \/22 + a*(exp \/22 +d F1)

The expansions (m{ < 1) for I+({) are found with help of the equations

1 1 U
— =42 N 5 A2l
exp(u) =1 u 2 nZ W+ 4Ann? ( )
and
1 1 - u
==— A22
exp(u) + 1 2 Z W + 2n + 1)? (A-22)

Multiplying the integrand of (A.19) by x™¢, using the expressions (A.21) and
(A.22), and integrating term by term letting € — 0 at the end, we obtain the
asymptotics of Q4 (C) in the form

£+lln(i)+1+
2a

2 47 2
I:(C) = ! B (A.23)
1 m(—) _1,
2 2

Then the expansion for Q+(C) is
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() ()

167 | ma N 4n
m
Q. = ! mil (A.24)
—— 5 In HE ) 4o
167
The contribution N+ («) is found from
0 _1
o N+(a) = 5 I-(a) (A.25)

Integrating (A.25) over the variable a with expansion (A.23), we get

- e 2 .
—a :lna+ (1—27+21n47t)+?+

N+(§) = 2 e 2 (A.26)
“ma—Ca oy 42+ =

As a result we can write the equation for 2({) in the form
2+(0) = miF+(mgl) (A.27)

where the function F+ has the following expansion:

—L ——Slna+ 7 (
_ 41ta 87t 167
Fela) =) |
g2 04 16 2 244
(A.28)
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